

What's Been Recently Added to SPICE?

Masha Liukis

NAIF / Jet Propulsion Laboratory, California Institute of Technology

3rd Planetary Data Workshop

Flagstaff, AZ

June 13, 2017

The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

SPICE Toolkit N66

- Released in April 2017
- Implemented in Fortran 77, C, IDL and MATLAB
- Available at https://naif.jpl.nasa.gov/naif/toolkit.html
- Also available as alpha-test Java Native Interface (JNI) SPICE Toolkit at https://naif.jpl.nasa.gov/pub/naif/misc/JNISpice
- User-crafted Python interfaces to SPICE are expected to be updated for N66 Toolkit:
 - Andrew Annex: https://github.com/AndrewAnnex/SpiceyPy
 - Mark Showalter/Robert French: https://github.com/SETI/pds-tools

Major New Capability

- The tessellated plate portion of the Digital Shape Kernel (DSK)
 - More functionality, more thorough testing and more thorough documentation as compared to the previous (alpha-test) version
 - DSK capabilities are fully integrated into the SPICE Toolkit

Major New Capability

- The tessellated plate portion of the Digital Shape Kernel (DSK)
 - Provides high precision shape models of irregularly shaped bodies

Major New Capability

- The tessellated plate portion of the Digital Shape Kernel (DSK)
 - Provides a utility for producing a tessellated plate DSK from a number of popular shape model data formats (MKDSK)
 - Provides a utility for exporting DSK data into common text 3D shape formats (DSKEXP)
 - Please see "The SPICE Digital Shape Kernel (DSK) Subsystem." poster by N. J. Bachman

SPICE N66 Capabilities

- New routines as a result of new DSK capability:
 - LIMBPT, TERMPT, LATSRF, ILLUMF, SRFNRM
- Improved run-time performance in some cases
- Many new Icy and Mice wrappers
- The two-line element SPK type has been upgraded to use high-precision Vallado algorithms

SPICE Tools

- Improved usability of the WebGeocalc Tool (WGC), a web-based Graphical User Interface to a SPICE geometry data:
 - Perform SPICE computations without the need to write a program
 - Provides access to a large collection of SPICE kernels
 - Now works with Digital Shape Kernel shape models
 - https://naif.jpl.nasa.gov/naif/webgeocalc.html

SPICE Tools

- Some enhancements of the SPICE-aware Cosmographia, 3D mission trajectory visualization application:
 - https://naif.jpl.nasa.gov/naif/cosmographia.html

SPICE Tools

Navigation and Ancillary Information Facility

Please see
 "WebGeocalc and Cosmographia: Modern
 Tools to Access SPICE Archives" poster by
 Semenov B. V., Acton C. H., Bachman N. J.,
 Ferguson E. W., Rose M. E., Wright E. D.

SPICE Ongoing Developments

- C++ implementation of the SPICE Toolkit
 - Object-oriented design
 - Multithreaded
 - Some performance improvements

SPICE Ongoing Developments

Navigation and Ancillary Information Facility

 Completion of the digital elevation model (DEM) portion of the DSK subsystem

SPICE Training

Navigation and Ancillary Information Facility

- Domestic SPICE Beginner's training class on November 7-9, 2017, near Pasadena
 - Watch NAIF's "Announcements" webpage for details:

https://naif.jpl.nasa.gov/naif/announcements.html